Telecommunication

AT&T

broadcasting

AM broadcasting

FM broadcasting

Reception distance

VHF radio waves usually do not travel far beyond the visual horizon, so reception distances for FM stations are typically limited to 30–40 miles (50–60 km). They can also be blocked by hills and to a lesser extent by buildings. Individuals with more-sensitive receivers or specialized antenna systems, or who are located in areas with more favorable topography, may be able to receive useful FM broadcast signals at considerably greater distances.

The knife edge effect can permit reception where there is no direct line of sight between broadcaster and receiver. The reception can vary considerably depending on the position. One example is the Učka mountain range, which makes constant reception of Italian signals from Veneto and Marche possible in a good portion of Rijeka, Croatia, despite the distance being over 200 km (125 miles). Other radio propagation effects such as tropospheric ducting and Sporadic E can occasionally allow distant stations to be intermittently received over very large distances (hundreds of miles), but cannot be relied on for commercial broadcast purposes. Good reception across the country, is one of the main advantages over DAB/+ radio.

This is still less than the range of AM radio waves, which because of their lower frequencies can travel as ground waves or reflect off the ionosphere, so AM radio stations can be received at hundreds (sometimes thousands) of miles. This is a property of the carrier wave’s typical frequency (and power), not its mode of modulation.

The range of FM transmission is related to the transmitter’s RF power, the antenna gain, and antenna height. Interference from other stations is also a factor in some places. In the U.S, the FCC publishes curves that aid in calculation of this maximum distance as a function of signal strength at the receiving location. Computer modelling is more commonly used for this around the world.

Many FM stations, especially those located in severe multipath areas, use extra audio compression/processing to keep essential sound above the background noise for listeners, often at the expense of overall perceived sound quality. In such instances, however, this technique is often surprisingly effective in increasing the station’s useful range.

Pulse dialing

Pulse dialing is a signaling technology in telecommunications in which a direct current local loop circuit is interrupted according to a defined coding system for each signal transmitted, usually a digit. This lends the method the often used name loop disconnect dialing. In the most common variant of pulse dialing, decadic dialing, each of the ten Arabic numerals are encoded in a sequence of up to ten pulses. The most common version decodes the digits 1 through 9, as one to nine pulses, respectively, and the digit 0 as ten pulses. Historically, the most common device to produce such pulse trains is the rotary dial of the telephone, lending the technology another name, rotary dialing.

Push-button telephone

The push-button telephone is a telephone that has buttons or keys for dialing a telephone number, in contrast to having a rotary dial as in earlier telephone instruments.

Western Electric experimented as early as 1941 with methods of using mechanically activated reeds to produce two tones for each of the ten digits and by the late 1940s such technology was field-tested in a No. 5 Crossbar switching system in Pennsylvania. The technology at that time proved unreliable and it was not until after the invention of the transistor that push-button technology became practical.